Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jens Hartung,* Nina Schneiders and Uwe Bergsträsser

Organische Chemie, Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany

Correspondence e-mail: hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.035 wR factor = 0.085 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-(1-Methyl-1-phenylethoxy)-1,3-thiazole-2(3*H*)-thione: a tertiary thiohydroxamic acid O-ester

The steric demand of a tertiary alkyl substituent attached to the thiohydroxamate O atom in the title compound, $C_{13}H_{15}NOS_2$, is reflected in a widening of the associated N– O–C angle [116.4 (2)°]. Close contacts along [100] indicate C–H···S interactions in the crystal structure. Received 31 August 2006 Accepted 19 September 2006

Comment

3-(1-Methyl-1-phenylethoxy)-1,3-thiazole-2(3H)-thione, (I), is a photolabile compound that undergoes facile *N*,*O*-homolysis upon UV–vis photolysis or if heated in the presence of a free radical initiator (Hartung *et al.*, 2006). The compound was prepared and investigated by X-ray diffraction in order to study the hitherto unknown geometry of tertiary thiohydroxamic acid *O*-esters.

The cumyl substituent of (I) is rotated by 95.6 (2)° from the plane defined by the thiohydroxamate entity and the *N*,*C*-bridging vinyl-thiyl subunit, as measured by the appropriate torsion angles (Table 1). The unit cell comprises a 1:1 mixture of *P*- and *M*-rotamers with respect to the configuration about the stereogenic N–O axis. In CDCl₃ solution (298 K), a fast rotation about this axis occurs, as is evident from the topomerization of prochiral substituents, *i.e.* C8H₃ and C9H₃.

Bond lengths and angles within the heterocyclic core and those associated with the thiohydroxamate functionality

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I). Displacement ellipsoids are plotted at the 50% probability level. Only one disorder component is shown.

Figure 2

The packing of (I) in the crystal structure, viewed approximately along [010]. Hydrogen bonds are drawn as dashed lines.

(Table 1) correspond to values reported previously for a secondary N-alkoxy (Hartung et al., 2003) and an N-(alkoxycarbonyloxy) (Hartung et al., 2005) derivative of N-hydroxy-4methylthiazole-2(3H)thione. The major difference between the reference data and those of compound (I) is due to a significant widening of the N3–O1–C7 angle [116.4 (2) °]. The origin of this feature is probably associated with the steric demand of the cumyl substituent attached to O1.

The packing of (I) in the unit cell $(Z = 4, P2_1/c)$ leads to close H5B···S2ⁱ (2.93 Å) contacts along [100] (Fig. 2 and Table 2). The separation of these atoms and the associated angle at H5B indicate C-H···acceptor interactions between C5H and C=S (Steiner, 1996; Hartung et al., 2005).

Experimental

2-Phenyl-2-propanol (1.10 g, 8.08 mmol), CuCl (16.0 mg, 0.162 mmol) and diisopropyl carbodiimide (1.02 g, 8.08 mmol) were stirred in anhydrous dichloromethane (5 ml) for 24 h. A solution of N-hydroxy-4-methylthiazole-2(3H)-thione (1.31 g, 8.89 mmol) (Barton et al., 1986) in anhydrous dichloromethane (20 ml) was added at 203 K. The reaction mixture was stirred at 293 K for 45 h. The solids were filtered off and the solvent was removed under reduced pressure. The residue was purified by column chromatography [SiO₂, pentane-diethyl ether, 2:1 (ν/ν), $R_{\rm f} = 0.44$] to afford colourless crystals of (I) (yield 70.0 mg, 0.26 mmol, 3%). Crystals suitable for X-ray analysis were obtained from a saturated solution of (I) in diethyl ether (m.p. 379 K). Analysis, calculated for C₁₃H₁₅NOS₂: C 58.83, H 5.70, N 5.28%; found: C 58.98, H 5.68, N 5.26%.

Crystal data

$C_{13}H_{15}NOS_2$	Z = 4
$M_r = 265.38$	$D_x = 1.294 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.7504 (16)Å	$\mu = 0.37 \text{ mm}^{-1}$
b = 18.363 (4) Å	T = 293 (2) K
c = 9.788 (2) Å	Prism, colourless
$\beta = 102.16 \ (3)^{\circ}$	$0.35 \times 0.25 \times 0.20 \text{ mm}$
$V = 1361.9 (5) \text{ Å}^3$	
Data collection	
Stoe IPDS diffractometer	2099 independent reflections
φ scans	1278 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.090$
φ scans Absorption correction: none	1278 reflections with $I > 2\sigma(I R_{int} = 0.090)$

 $\theta_{\rm max} = 24.2^\circ$

Absorption correction: none 10870 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2 (F_o^2) + (0.0355P)^2]$
$wR(F^2) = 0.085$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.92	$(\Delta/\sigma)_{\rm max} < 0.001$
2099 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S1-C2	1.720 (3)	C2-N3	1.362 (3)
S1-C5	1.727 (3)	N3-C4	1.406 (3)
O1-N3	1.370 (2)	C4-C5	1.317 (4)
O1-C7	1.511 (3)	C4-C6	1.487 (4)
S2-C2	1.654 (2)		
$C^{2}-S^{1}-C^{5}$	91 99 (13)	$C_{2}-N_{3}-C_{4}$	116.9 (2)
N3-01-C7	116.41 (16)	01-N3-C4	121.86 (19)
N3-C2-S2	128.04 (19)	C5-C4-N3	110.2 (2)
N3-C2-S1	107.55 (16)	C5-C4-C6	129.0 (2)
S2-C2-S1	124.40 (15)	N3-C4-C6	120.7 (2)
C2-N3-O1	120.20 (18)	C4-C5-S1	113.1 (2)
\$2-C2-N3-O1	-5.9 (3)	C7-O1-N3-C2	95.6 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots S2^{i}$	0.93	2.93	3.713 (3)	142
	4			

Symmetry code: (i) x - 1, y, z.

The H-atom sites at C6 are disordered, probably due to a 0.5:0.5 population of CH₃ rotamers with a skew angle of 60°. The group was refined as a disordered methyl group with six half-occupied geometrically idealized positions for the H atoms. All other H atoms were positioned geometrically and treated as riding atoms, with C-H distances set to 0.96 (for CH₃) or 0.93 Å (Csp²-H) and with $U_{iso}(H) =$ $1.2U_{eq}(Csp^2 - H)$ or $1.5U_{eq}(CH_3)$.

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1998); cell refinement: *EXPOSE*; data reduction: *EXPOSE*; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1994); software used to prepare material for publication: SHELXTL-Plus.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/5-2) and the Fonds der Chemischen Industrie.

References

- Barton, D. H. R., Crich, D. & Kretzschmar, G. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 39-55
- Hartung, J., Gottwald, T. & Schneiders, N. (2006). In preparation.
- Hartung, J., Schneiders, N. & Bergsträsser, U. (2005). Acta Cryst. E61, 0421-0422.
- Hartung, J., Schwarz, M., Svoboda, I. & Fuess, H. (2003). Acta Cryst. C59, 0682-0684.
- Sheldrick, G. M. (1994). SHELXTL-Plus. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Steiner, T. (1996). Crystallogr. Rev. 6, 1-57.
- Stoe & Cie (1998). IPDS Software. Version 2.87. Stoe & Cie, Darmstadt, Germany.